Aspects of Symplectic Geometry in Physics Josh Powell 1 Symplectic Geometry In Classical Mechanics

نویسنده

  • Josh Powell
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symplectic Spectral Geometry of Semiclassical Operators

In the past decade there has been a flurry of activity at the intersection of spectral theory and symplectic geometry. In this paper we review recent results on semiclassical spectral theory for commuting Berezin-Toeplitz and ~-pseudodifferential operators. The paper emphasizes the interplay between spectral theory of operators (quantum theory) and symplectic geometry of Hamiltonians (classical...

متن کامل

BRST Structures and Symplectic Geometry on a Class of Supermanifolds

By investigating the symplectic geometry and geometric quantization on a class of supermanifolds, we exhibit BRST structures for a certain kind of algebras. We discuss the undeformed and q-deformed cases in the classical as well as in the quantum cases. Alexander von Humboldt fellow. On leave from Institute of Physics, Chinese Academy of Sciences, Beijing

متن کامل

2 00 1 Phase Space Geometry in Classical and Quantum Mechanics ∗

Phase space is the state space of classical mechanics, and this manifold is normally endowed only with a symplectic form. The geometry of quantum mechanics is necessarily more complicated. Arguments will be given to show that augmenting the symplectic manifold of classical phase space with a Riemannian metric is sufficient for describing quantum mechanics. In particular, using such spaces, a fu...

متن کامل

Angular Momentum, Convex Polyhedra and Algebraic Geometry

The three families of classical groups of linear transformations (complex, orthogonal, symplectic) give rise to the three great branches of differential geometry (complex analytic, Riemannian and symplectic). Complex analytic geometry derives most of its interest from complex algebraic geometry, while symplectic geometry provides the general framework for Hamiltonian mechanics. These three clas...

متن کامل

Symplectic inverse spectral theory for pseudodifferential operators

We prove, under some generic assumptions, that the semiclassical spectrum modulo O(~) of a one dimensional pseudodifferential operator completely determines the symplectic geometry of the underlying classical system. In particular, the spectrum determines the hamiltonian dynamics of the principal symbol.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007